Lehetséges méret változtatások a raszta tincsek esetében

Lehetséges méret változtatások a raszta tincsek esetében

Négyből három esetben van lehetőség arra, hogy a raszta tincsek méretét változtassuk. Hogyha egyszerű matematikai ismeretinkből nézzük, akkor x és y koordináta mentén lehet növelni vagy csökkenteni a raszta tincsek.

Lehetséges méretváltoztatás.

Legyen most példánkban az x tengely jelentése a raszta tincsek hosszúsága. Azaz bármilyen raszta tincs hosszúsága változtatható az alábbi módokon. Amennyiben a tincseket rövidíteni szeretnénk azt egyszerű levágással, kisebb méretűvé tehetjük. Ez az „x-?”. Ha pedig a tincsek hosszát növelni szeretnénk akkor rasta hosszabbítással annak mérete előre meghatározott, de mégis tetszőlegesen kiválasztott hosszúságú vált ehető. ez az „x+?”. Azaz x mentén mind a hosszabbítás, mind a rövidítés bármilyen raszta esetében lehetséges megoldás.

Könnyű kitalálni hogy y tengely jelöli azt a méretet, akkor a tincs vastagságát változtatjuk. Azaz a szóban forgó tincs tud-e vastagabb vagy vékonyabb lenni, azt fogja jelenteni a plusz és a mínusz értéket az y tengelyen. Itt pedig a lehetséges megoldás a tincsek vastagítása avagy vékonyítása. Bármilyen raszta tincsre plusz réteg horgolható rá mellyel vastagabbá válik. Ezt jól sejted, az „y+?” lesz. Továbbá ugyan ide tartozik a tincsek egyesítése, azaz kevesebb de vastagabb tincsekbe fogja rendezni a páciens rasztáját. Ha össze lesznek horgolva raszta tincsei, méretük egyesül, darabszámuk osztódik az egyesítések arányában. Viszont a teljes listából egyetlen egy kivétel maradt csak hátra. A tincsek vékonyítása, mely nem lehetséges. Azaz nincs olyan, hogy „y-?”. Hétköznapi logikával egyértelműen: lefaragni azaz levágni kell a tincsekből ahhoz, hogy azok vékonyabbak legyenek. Viszont a probléma az, hogy a raszta tincs az összekulcsolt hajszálak csoportja. Tehát hogyha abba belevágunk, egyszerűen csak szét fog válni és le fog hullani a hajszálaknak nagy része. Azaz vékonyítás helyett eltüntetésé fog fajulni kis idő után a szerencsétlen művelet. Sajnos tehát ez utóbbi eset egyedül nem lehetséges.

Leave a Reply